Importance of Data Mining in the Assessment of Anoxic Problem from Estuarine Monitoring Data
نویسندگان
چکیده
-A data retrieval procedure is used to process observed dissolved oxygen (DO) concentrations in the Chesapeake Bay to obtain information on the intensity or degree of anoxia, and to explore optimal DO-thresholds to define the degree of anoxia. The method consists of a series of processes, such as data interpolation, pattern mining, feature transformation, uncertainty management, and verification. A new metric, “anoxic intensity”, is an outcome from the data mining, which addresses the degrees of anoxia and improves over the traditional way using “anoxic volume” as the key metric of anoxia. The data retrieval method described overcomes the current methodology shortfalls that may lead to data misinterpretation. This paper emphasizes the importance of data mining for data utilization.
منابع مشابه
Enhancing Learning from Imbalanced Classes via Data Preprocessing: A Data-Driven Application in Metabolomics Data Mining
This paper presents a data mining application in metabolomics. It aims at building an enhanced machine learning classifier that can be used for diagnosing cachexia syndrome and identifying its involved biomarkers. To achieve this goal, a data-driven analysis is carried out using a public dataset consisting of 1H-NMR metabolite profile. This dataset suffers from the problem of imbalanced classes...
متن کاملApplication of Satellite Data and Data Mining Algorithms in Estimating Coverage Percent (Case study: Nadoushan Rangelands, Ardakan Plain, Yazd, Iran)
Assessing and monitoring rangelands in arid regions are important and essential tasks in order to manage the desired regions. Nowadays, satellite images are used as an approximately economical and fast way to study the vegetation in a variety of scales. This research aims to estimate the coverage percent using the digital data given by ETM+ Landsat satellite. In late May and early Ju...
متن کاملPreventing Key Performance Indicators Violations Based on Proactive Runtime Adaptation in Service Oriented Environment
Key Performance Indicator (KPI) is a type of performance measurement that evaluates the success of an organization or a partial activity in which it engages. If during the running process instance the monitoring results show that the KPIs do not reach their target values, then the influential factors should be identified, and the appropriate adaptation strategies should be performed to prevent ...
متن کاملA case study for application of fuzzy inference and data mining in structural health monitoring
In this study, a system for monitoring the structural health of bridge deck and predicting various possible damages to this section was designed based on measuring the temperature and humidity with the use of wireless sensor networks, and then it was implemented and investigated. A scaled model of a conventional medium sized bridge (length of 50 meters, height of 10 meters, and with 2 piers) wa...
متن کاملSports Result Prediction Based on Machine Learning and Computational Intelligence Approaches: A Survey
In the current world, sports produce considerable statistical information about each player, team, games, and seasons. Traditional sports science believed science to be owned by experts, coaches, team managers, and analyzers. However, sports organizations have recently realized the abundant science available in their data and sought to take advantage of that science through the use of data mini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006